Exercise 19

For the following exercises, determine whether there is a minimum or maximum value to each quadratic function. Find the value and the axis of symmetry.

$$
f(x)=\frac{1}{2} x^{2}+3 x+1
$$

Solution

Begin by factoring the coefficient of x^{2}.

$$
f(x)=\frac{1}{2}\left(x^{2}+6 x+2\right)
$$

In order to write this quadratic function in vertex form, it's necessary to complete the square, which makes use of the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=6$, which means $B=3$ and $B^{2}=9$. Add and subtract 9 on the right side within the parentheses and use the identity so that x appears in only one place.

$$
\begin{aligned}
f(x) & =\frac{1}{2}\left[\left(x^{2}+6 x+9\right)+2-9\right] \\
& =\frac{1}{2}\left[(x+3)^{2}-7\right] \\
& =\frac{1}{2}(x+3)^{2}-\frac{7}{2}
\end{aligned}
$$

Therefore, the vertex of the parabola is $\left(-3,-\frac{7}{2}\right)$. The axis of symmetry is $x=-3$, and the minimum (because the coefficient of x^{2} is positive) is $y=-\frac{7}{2}$.

